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I Introduction

It is well known that ray optical solutions fail at and near caustics of ray sys-

tens thus requiring one to modify the ray solutions in such regions using uniform

asymptotic techniques. In this paper, uniform asymptotic high frequency field repre-

sentations are presented which remain valid within the transition regions adjacent

to a smooth caustic formed by the envelope of the geometrical optics (GO) rays

reflected from two and three-dimensional smoothly indented perfectly- conducting

boundaries in free space. These field representations are uniform in the sense that

they are bounded and continuous at the caustic; furthermore, outside the caustic

transition regions they recover the GO reflected ray fields which are valid on the lit

side of smooth caustics, and they properly reduce to the complex ray fields given

recently by Ikuno and Felsen [11 on the dark side of such caustics wherein real rays

do not penetrate.

I While the subject of evaluating fields in caustic regions is not new, the uniform

solutions generally presented in the recent past mainly emphasize the mathematical

aspects of the problem; hence, one of the primary goals of this paper is to try to

present the uniform results obtained here in a fashion that would be particularly

useful for engineering applications requiring a ray analysis of the problems of elec-

tromagnetic (EM) scattering by boundaries that can generate smooth caustics of

reflected rays. Consequently, an important feature of the present results is that they

provide a relatively simple prescription not only for evaluating the fields on the lit

side of smooth caustics, but also for evaluating the fields on the dark side of such

caustics. It is noted that most other uniform solutions which recover the GO fields
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on the deep lit side of the caustic appear to be more complicated for evaluating

the fields within and outside the transition region on the dark side of the caustic;

this is because the parameters present in those solutions typically must be found

from a knowledge of the radius of curvature of the caustic and the perpendicular i
distance from the caustic to the observation point. While it is known that it also

possible to more directly find the parameters in those solutions for the lit side from

just a knowledge of the GO fields which need to be corrected within the caustic 3
regions, no such direct simplification appears possible in these solutions to find the

parameters for evaluating the fields on for the dark side of the caustic. On the other

hand, the parameters occurring in the present. solutions can be found relatively eas-

ily from the stationary phase points in the physical optics (PO) approximation for i

the radiation integral over the currents induced on the reflecting boundary by the

incident field. It is noted that the PO approximation employs the usual geometrical I
optics (GO) field to find these induced currents. This PO approximation is valid

whenever the smooth reflecting boundary is electrically large and well illuminated;

these conditions are assumed to hold in the present analysis and are the same as the

ones required in the GO reflection calculations. There are two real stationary phase

points in the PO radiation integral over the reflecting boundary for an observation 3
point on the lit side of a. smooth caustic of the reflected rays; these stationary points

coalesce to form a second order stationary point for observation points on the caus- i
tic itself, and then they become two complex stationary points (which are complex

conjugates of each other) for observation points on the dark side of the caustic even 3
though only one of these eventually contributes to the fields on the dark side outside

the caustic transition region. As usual, the relevant stationary phase points can be

2I I
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found simply by requiring the spatial derivatives of the phase function in the PO

radiation integral over the reflecting surface to vanish as described later in Section

It is useful at this juncture to briefly review some of the previous related work.

Rahnavard and Rusch [2] treated the problem of electromagnetic (EM) scattering

by a shaped subreflector surface with a point of inflection. Their PO based asymp-

totic solution is valid in the transition region adjacent to the locally smooth portion

of the reflected ray caustic which results from the effect of an inflection point on

the subreflector geometry. However, their solution is only partially uniform as it

does not recover the GO reflected field on the lit side of the caustic; also, they

introduced an additional approximation in the asymptotic treatment of the PO ra-

diation integral for evaluating the field on the dark side of the caustic instead of

making use of the complex stationary points in the integrand. Nevertheless, their

solution provided some useful nuumerical results for shaped subreflector design when

it was employed within its range of validity. Albertsen, et al. [3] obtained a solution

I valid near smooth caustics of edge diffracted rays; they performed an asymptotic

evaluation of the radiation integrals over equivalent edge currents to arrive at their

solution. Next, they introduced a heuristic factor in their solution so that the result-

ing modified solution would reduce uniformly to the ray solution (based on Keller's

Iedge diffracted ray fields) on the lit side of the caustic; they also introduced the

same approximation as in [2] for the dark side of the caustic. Kravatsov [4], and

ILudwig [51, independently showed that the leading terms of an asymptotic solution

which remained uniformly valid across a smooth caustic contained not just an Airy

function as in 12,31, but also its derivative which was missing in [2,3]. Ludwig's

I3
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ansatz [5] is actually based on a uniform asymptotic evaluation of an integral with

two nearby saddle points as given by Chester, Friedman and Ursell [6]. The lat-

ter asymptotic evaluation is summarized lucidly in texts by Felsen and Marcuvitz

171, and Stanmes [8]. While the term involving the derivative of the Airy function

vanishes at the caustic, it is of the same order as the Airy function term exterior

to the caustic transition region and its inclusion is therefore necessary to uniformly I
recover the corresponding ray solution deep in the lit region. It is noted that the

solutions developed in this paper also contain the Airy function and its derivative

since the integrals leading to these solutions are evaluated asymptotically using the

techniques developed by Chester, et al. [6,7]. Ludwig's analysis [5] provides in-

portant extensions to the earlier work of Kay and Keller [9], and in particular of

Buchal and Keller [10]. Ludwig's approach [5] requires one to initially assume a

general form of the uniform solution given by Chester, et al. [6) and the amplitudes -

and arguments of the uniform functions (involving the Airy function and its deriva-

tives) are then obtained by requiring the solution to satisfy the wave equation in the

high frequency limit. However, this systematic and elegant approach for the two-

dimensional case by Ludwig [5] appears to be cumbersome especially for treating

the corresponding three- dimensional case. More recently, phase-space techniques

have been employed by Maslov [11,12] for evaluating the fields in the neighborhood

of ray caustics; in that method, the field is eventually expressed as a spectral inte-

gral which can be transformed locally into a canonical form, as, for example, the

one treated by Chester, et al. [6] for the case of a smooth caustic. The general re- 3
lationships between caustics, their associated field singularities and ray geometries

are also expressed in a systematic fashion in catastrophe theory [13], which defines 3
4 I
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caustics as singularities of ray families and classifies caustics according to their sin-

gularities. In particular, the smooth caustic is classified as a "fold" catastrophe.

Catastrophe theory provides a mapping for the phase function in an integral repre-

Isentation for the field near a caustic so that it can like wise be locally transformed

into a canonical integral. Very recently, Arnold [14,15] has essentially extended

IMaslov's method to include discontinuities in a scattering boundary; there, he em-

ploys a spectral synthesis of uniform wavefunctions for analyzing fields near smooth

caustics based on ideas common to Maslov's method and catastrophe theory. As

in the present approach, Arnold's method is readily applicable to treat the case of

smooth caustics in three dimensions. However, even though these previous elegant

I treatments in [4j-[6],[10-[15] provide the general concepts involved for analyzing the

fields in caustic regions, they are presented at a relatively sophisticated mathemat-

ical level and the final solutions which generally avoid any explicit treatments of

the fields on the dark side of the caustic do not appear to be readily ammenable for

I use in engineering applications. These treatments in [41-[6],[101-[15] provide uniform

solutions (usually explicitly for the lit side of the caustic) which contain parameters

that are essentially expressed in terms of the caustic (or corresponding wavefront)

geometry; hence, it is necessary first to know the details of the caustic geometry

especially for evaluating the fields on the dark side of the caustic. The latter com-

Iplication is avoided in the present approach. It is noted that the present approach

can be easily generalized to deal with the reflection from an impedance boundary

or from a dielectric interface.

or 5



The problems of two and three-dimensional smooth caustics are analyzed in

essentially the same fashion in the present approach. If there are two caustics, the

present analysis is valid across each caustic provided that the obervation point is

far from the region where the two caustics merge together to from a cusp. Near I
the cusp, a different approximation is necessary. There are generally two smooth

caustics present in the (3-D) case; the present analysis is valid across each smooth

caustic for the latter case provided that these two caustic surfaces do not intersect.

In practical applications, the surfaces which scatter are of finite extent; hence,

there may be situations where the caustic can terminate in which case the present

analysis is valid across a locally smooth portion of the caustic which is sufficiently

far from the caustic termination, and 'he g nerally smaller effect of that termination 3
must be found separately. The uniform results are developed and presented here

in Sections II and III for the 2-D and 3-D vector EM cases, respectively, with U
all the parameters being defined explicitly for both the lit and the dark side of

the caustics in a form suitable for engineering applications. These uniform results I
are employed in this paper to analyze the scattering by boundaries which contain

inflection points. In particular, numerical results have been obtained, as shown in

Section IV, for the far zone EM plane wave backscattering by a concave-convex

shaped boundary with an edge, and also by a smoothly indented cavity, both of

which contain points of inflection on their boundaries. The numerical results for the 3
concave-convex geometry with an edge are shown to compare well with independent

moment-nethod calculations. Numerical results for the smoothly indented cavity _

are compared with those of a rectangular cavity of the same length and depth. It is

seen that. the scattering from the smoothly indented cavity can be of the same order

6
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within the caustit. regions as that from a non-smooth rectangular shaped cavity.

IAn CJwt time dependence is assumed and suppressed in the following analysis.
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II An Asymptotic Solution for the Field Associ-

ated with a Two Dimensional Smooth Caustic

An asymptotic high frequency analysis is presented in this section for predicting

the EM fields within the caustic regions of rays reflected from smoothly indented

perfectly-conducting two dimensional boundaries in free space. The excitation in

these problems is assumed to he produced by a localized source which is sufficiently

far (in terms of the electrical wavelength) from the boundaries so that the field inci-

dent from the source can be represented ray-optically. If the excitation is due to an 3
electrically large or extended source distribution, then one can quantize that source

distribution so that each quantized source element satisfies the above criterion; the

complete reflected field in this case can be found by a superposition of the fields

reflected from the boundaries when they are illuminated by each of the quantized

source elements.

The scattering by geometries depicted in Figures 1(a) and (b) represent typical

situations of interest here in which smooth caustics of reflected rays are formed.

Both the non-uniform as well as the uniform asymptotic high frequency approxi-

inations of the physical optics integral for the scattered field in two-dimensions are

presented separately in Parts A and B of this section, respectively. The non-uniform

asymptotics furnish the usual pair of GO reflected ray fields on the lit side of the

smooth caustic of reflected rays; these two real reflected rays are associated with the

two real stationary phase points in the PO integrand, and they become degenerate

as the stationary points coalesce for observation points on the caustic where their

associated field exhibits a singularity. The non-uniform asyniptotics also provides I
8I
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a result for the field on the (lark side of the caustic which is associated with only

I one of the two complex stationary points; as indicated earlier by Ikuno and Fel-

son [1], this evanescent (exponentiailly decaying) field can be described in terms of

a complex ray specularly reflected froim a complex extension of the surface. The

other complex (conjugate) stationary point gives an unbounded result and it must

be discarded in the non-uniform analysis on physical grounds as its contribution

violates the radiation condition. The non-uniform result for the dark side also ex-

hibits a field singularity at the caustic as does the GO result for the lit side. It is for

the sake of completeness that the non-uniform asymptotic treatment is included;

moreover, it serves to introduce the notation which is also used later in the uniform

asymptotic analysis. Of course, the non-uniform result is not valid at and near the

caustic; instead, one must employ a uniform solution there as discussed in Part B.

II-A Non-Uniform 2.-D Analysis:

The electric field P(P) at any point P exterior to the boundary C of Figures 1(a)

and 1(b) which here constitutes the field scattered by the boundary can be expressed

in terms of the usual radiation integral over the electric current j induced on C by

I the source at P' as

P kZ f H(2)

E3 (P) R k j [ x F? × .(Q')] H()(kR)df'l (1)I4
where J(Q') is the value of J at any point Q' on the boundary C and fR = Q'P.

Also, the point P cannot be too close to the reflecting boundary for (1) to be valid.

Also k and Z0 are the wavenumber and impedance of free space respectively and

H(,,2(kR) is the usual cylindrical Hankel function of the second kind of order zero.

9



I
To be specific, P = PL for an observation point on the lit side of the caustic and

P = Ps for an observation point on the dark side of the caustic, respectively. In

the PO approximation to (1), the J(Q') is assumed to be given by GO as follows:

2ft x Hti(Q), on the lit portion of the boundaries K
J(Q') 0, on the shadowed portion of the boundaries , (2)

(where the direct illumination from the source is absent)

in which HP(Q') is the magnetic field at Q' which is directly incident from the

source whose phase center is at P', and h is the unit normal vector to the boundary

C at (Q') as shown in Figures 1(a) and 1(b). Under the previously mentioned I
assumptions, the Hli(Q,) may be expressed ray optically as

-jks Ifl~),z ixA e with i .- A =0 (3)

It is also understood that I(Q') Z;1.i x E'(Q'), in which k = P'Q', ' -

and E'(Q') is the electric field associated with H'(Q'); it is clear from (3) that

(Q,) = Ae--. Using the large argument approximation of H,(o)(kR for kR >>

1, and the assumed current in (2) within (1) yields the PO integral for E'(P) at an

observation point P as
ejk-jk(s' +R)I

EJ() / XR (i A) dt' (4)
! °2P) C [/ × ×( × ×

The integral in (4) can be evaluated for large k via the method of stationary phase

[7,8]. The stationary phase points are determined by the condition

V(s' + R) = 0 (5)

10

I
I



in which d' = 'd' 1 along the two-dimensional reflecting boundary C. Both s' and

R are functions of t' (arc length to Q' along C from some reference point 0 on C).

The solution to (5) yields the stationary phase points at:{e' and f', at Q, and Qb respectively on C,la, ib'(6)I when P = PL for an observation point on the lit side of the caustic

where for the sake of being specific one requires the following, in addition to (5):

I 2 (s i + R) >0; a 2
(Si + R)

and tlalb

I t { . and t'b, at Qc and Q, respectively,el= 11 (7)
when P = PL for an observation point on the dark side of the caustic.

IThe points Qc and Q, are associated with the complex stationary phase points ec

and e, which are conjugates of each other; thus, Qc and Q, must lie on the complex

Iextension of the boundary C as indicated in [1]. At the stationary points which

correspond to points of specular reflection at Qa and Qb on C, for P = PL, the

Ifollowing conditions hold; namely:

I x i x ,.; (8)
Ik

S.nc= i h. -- cos0 i  (9)

I - k 2(h i)hf =2cos Oih (10)

I 11
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/R: a,b forQ' (11) U

.i i for Q' Q.,b

i i.,b for Q'= Q.,b

Oe,, for Q' = Qo,b

In the neighborhood of the stationary points Qa and Qb when P PL, one arrives I
at the following local approximation for the phase term k(s' + R) as:

i 1 2 0a )2

? ± R sa,b + sa,b +- Gl(Qa,b) COS 2 0
,b( - e ,lb)

for Q' near Qab (12)

At high frequencies; i.e., for large k, the dominant contribution to (4) comes from

the stationary phase points Qa and Qb on C when P = PL; thus, (4) may be

approximated via (12) as usual to obtain:

E'(P) k [xf, e-x (x+8:)

V j e- [G(Q.)cos 2 8i (tS a, Sd

f- e(' +dell

X[Rb f b X (iib X . x A(Qb))] b

* j ~GI (Qb) cos 2 0,'(tl t)2d1}(3I

12I
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in which A(Q,b) denotes the value of A at Q0 ,b; also Gl(Qa,b) is defined asI GI ,) 1 1

G-(Q.,b) 1 + I , at Q.,b. (14)

I It can be shown that Sab Plalb

1 1 2
+ i 2  (15)Pla,l, s,, pg( Q,,b ) Cos $ai,b

The domains of integration Ca and Cb include the isolated or disjoint neighborhoods

of the points Q. and Qb on C. The Pg(Q.,b) denotes the radius of curvature of

the boundary C along t' at Q.,b; furthermore, Pra,lb corresponds to the radius of

curvature of the reflected wavefront associated with the GO rays reflected from the

points Qa,b on C, and ab is the usual angle of incidence (made by the incident ray

and the normal to C at Qa,b). An evaluation of the integrals over Ca and Cb in (13)

after extending the limits of integration to infinity via the stationary phase approach

(which yields ff e-iG( 2d. = I¢ VIe-Jsn() , wherein Sgn(GI(Qa)) = +1 and

Sgn(GI(Qb)) = -1 for G1(Qa) > 0 and GI(Qb) < 0, respectively. ) leads to

I RakX i "X A(Qa))I ejk(si +s')

E (PL) - j [f a X (i ,a X sa x V/.,tg.,

22ir

I~~~ ~ 4-(Q)coj'Sgn(G(Q.))

±[R b X x(iib X 4x A(Qb))V -7-I
IQb2ir e-.Sgn(G(Qb)) (16)k 6(O) cos2 0i

It is noted that

Ib X R0 ,b X i X Sob x A(Qab)) z ( 2 iabia,b - I) A(Qa,b)COSO,b (17)

I 13
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in which I is an identity dyad (so that I. A = A). In two-dimensions, where one is

restricted to the z = 0 (say) plane; i.e., to the (x,y) plane, then I = ii + "j. For I
example, I = ii + + i in a rectangular coordinate system. Thus, incorporating

(14) and (17) into (16) yields: I
EP(&I) - E (PL) + Er(PL) (18)=

where

e-Jk

E.,(PL) (2ii,bii.,b - 1) A(Q.,b) e

rPla,l b jk ,b

SinIb --,(19)

Since, A(Qo,,)! 'r can be identified as E t (Q,..,) (see comments below (3)), the

preceeding result becomes:

Ea,b(PL) - E(Qa,b) .R(Qa,b) P b - 2,0)

where (

R(Q.,b) =_ 2 ab O,- 1 (21)

can be recognized as the dyadic reflection coefficient for a perfectly conducting 3
boundary. Consequently, the non-uniform asymptotic result for E°(PL) in (18)

together with (20) can be identified as the sum of the fields associated with the

two GO rays reflected from the points Q.,b as shown in Figures 1(a) and 1(b). It

is noted that one must require GI(Qa) > 0 and GI(Qb) < 0 to be consistent with

14 1
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Figures 1(a) and 1(b); thus,

/ _ ± Pla ,since GI(Qo) > 0, (22)V pi° : pr. + r

and

__ P'lb _ P 4 since GI(Qb) < 0 (23)
P/ b+'b + Sb

must be true in (19) and (20) as required by (16). Clearly, (22) and (23) indicate

that the principal (positive) branch of the square roots must be taken. As usual,

the additional phase e 2 in (23) indicates that the GO ray reflected from the point

Qb touches the caustic before reaching PL as shown in Figures 1(a) and 1(b). It is

convenient to express the reflection coefficient R in terms of the unit vectors fixed

in the incident and reflected rays [161 as shown in Figure 1(c) ; thus,

R _L + Re i

I = = F1 for a conducting boundary. (24)
h

The non-uniform asymptotic high frequency or the GO approximation for the

refelcted field -(PL) at PL which is valid on the lit side of the caustic but external

to the caustic transition region is given explicitly via (16) through (24) as:

E,'iPL) - RiQ<,) . RiQa,) VPr -jk-+ .

I4a ± Sa= 7 Plb j(25

+E'(Qb) R(Qb) . e-ia (25)

All the quantities in (25) have been defined previously. It, is noted that R(Q.b)

in (25) is as given in (24) except that the unit vectors K1, I and [* are evaluated

15
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separately for the first and second terms on the right hand side of (25) corresponding

to each of the rays reflected from Q, and Qb, respectively.

At the caustic s. = p and pr. = - I ; hence the GO reflected field E'(PL)
6 d lb 1b lb

in (25) becomes singular there. The representation in (25) is not valid at and near I
such a caustic of reflected rays.

One can likewise extend the stationary phase analysis into the shadow region; I
in the latter case, one can show that the scattered field ES(Ps) at a point Ps in the

shadow region is given by:

E'(P.) EI(Qc) .R(Qa) e- b (26a)

with 3
E'(Qc) = A(Qc) e- (26b)

The contribution in (26) is associated with the complex stationary phase pointQ, corresponding to f' =(, (see (7)), which nmst lie on the complex extension of I
the reflecting boundary as discussed by Ikuno and Felsen [2]; the contribution from

the other (conjugate) stationary phase point at Qc corresponding to t' = e' must
be discarded on physical grounds since it gives rise to an exponentially increasingl

field amplitude as mentioned before. The contribution in (25) can be shown to be

exponentially decreasing corresponding to an evanescent field at Ps on the dark side 3
of the caustic. The superscript c in the quantities appearing in (26) denotes that

those quantities are associated with the "complex" stationary point Q ,.

It is noted that the quantity pC on the right hand side of (26) is calculated via
an analytic continuation of the correspondling expression for p , in (15). This follows I
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because the point of specular reflection Qb on the actual boundary in real space for

an observation point P = PL on the lit side of the caustic is analytically continued

to a complex location Qc, which obviously must lie on the complex extension of

the original boundary when P = Ps for an observation point on the dark side of

the caustic [1]. Thus, when the right hand side (RHS) of the expression in (15) is

evaluated at the real stationary point Qb, then one obtains the value denoted by

pr which appears on the left hand side (LHS) of (15); likewise, when the (RHS) of

(15) is evaluated at a complex stationary point Qc, then one obtains the analytic

continuation of pr from its value at the real coordinates of Qb to its value at the
complex coordinates of Q,. The manner in which the quantities s, s,, pg(Q,),

cosObc (= value of cos#' in (10) evaluated at Q,), prc, etc., are evaluated for the

complex stationary point Qc by a simple analytic continuation of the corresponding

expressions given in (8)-(11) and (15) for real stationary points, is described in the

Appendix for the sake of completeness and convenience. Also, the R(Q,) may be

found by analytic continuation of R(Qb) in (21) to the complex location Q, in place

of Qb, or by evaluating R in (24) at Qc; either of these procedures should yield the

same result for R(Q,). If (21) is used, then the hib therein which is evaluated at Qb

must be replaced by fic when it is evaluated at Q,; similarly, if one employs (24), then
the eL, , must be replaced by their analytically continued values e, e and ec

for the complex stationary point Q, as shown in the Appendix. The expression in

(26) also becomes singular at the caustic where Q,, p", s,, etc., become real and

pI, p' I as well as s"' .1 Pc 1; hence, (26) is also not valid at and near the

caustic. A uniform representation valid at and near the reflected ray caustic which

recovers the results in (25) and (26) for the lit and dark sides of the caustics that

I 17



lie outside the caustic transition region is described next.

II-B Uniform 2-D Analysis

The starting point for the analysis is again the integral representation for the scat-

tered field E'(P) which is given in (1). This integral will be evaluated via a uniform

asymptotic procedure [6] to overcome the limitations (near the caustic) of the non-

uniform solution which was developed in Part A of this section. Again, one may

make the usual approximations which lead to (4) as before. The results in (5), (6)

and (7) are still valid. However, instead of incorporating the local phase approxima- 3
tion of (12) into (4), which is valid if the stationary points are isolated (or not close

together) as it happens when one is outside the caustic transition region, one mist I
now employ a different procedure which remains valid even where the stationary

points come close together as it happens for observation points near the caustic.

Thus, instead of (12), one employs the following transformation when P PL on-

the lit side of the caustic:

Si +R !t3 btb (t C>O0 (27)I
3

where

2 [( + s') 4- (s s')] (28)

and

= 4 [(s, ± s) S ' S + s)]9 . (29)

183 I
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all the quantities on the RHS of (28) and (29) have been defined previously in Part

A (also see Figures l(a) and 1(b)). Substituting (27) into (4) yields

E'(PL) "  f 0f dt F(t) e- k( t3- t) (30)

with
j , - 1 de'()

P(t) j [ii x i x (i x xA)l 1_- (31)

The limits of integration in (30) have been extended to infinity even if C is a finite

closed contour because in the present development one is interested only in the con-

tribution from the saddle points which dominates near the caustic; the contribution

I from the end points at ±oo is vanishingly small. Any other contributions to the

radiation integral in (4) which may arise clue to a finite closed contour C must be

I added separately and are not dealt with here.

Following Chester, et al. [6], one may now expand F(t) in (31) as

00
F(t) + [m(t2 -- 4)f + b,,t(t' - )m] (32)

mn = 0

Retaining only the leading term (m= 0 term) in the above expansion of (32) yields

the following result for E'(PL) in (30):

E'(PL) - 21rj e- 1' jPtk - Ai(-k'et) ± j4t 2QeAk-Ai'(-ke))

+0(k - 1 ) (33)

in which Ai((r) = f3-,o e-j(1T+O) di; and Ai'(or) der Ai(a). It can be shown that

the PL and QL in (33) are given by:

{ g 2 i: [ r s: Vc(Q,)cos2ei

I
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Bb cOS 0' C+j b b- (34)
V',S "b Gl(Qb)COS Obi

with

B.,b COS 0i, - R,b X ,b X Lila,b X >ob x A(Q,b)] (35)

It follows from (17), (19) and (20) that the preceeding result in (35) can be

written as

Ba,bCOSO ,b = A(Qa.,b) R(Q.,b) coS ot (36)

in which A(Q.,b) is given by Ei(Qa,b) = A(Qab) ,b as indicated previously below

(26). Incorporating (37) together with (14) into (34) and (35) gives I

{ } I k (Qa R(Qa P a 3
A(Qb)-R(Qb)4/ Plb e +j] (37)

with the understanding that (22) and (23) are true in (37). It is noted that A(Qa,b) i
can depend on Q,,b not only via and L in terms of which the polarization of E'

can be expressed, but there could be additional pattern information of the source

contained in A as a result of which A can also depend on kib (that along with ' and

1_L in turn depends on Q0 ,b). On the lit side exterior to the caustic transition region,
the result for E '(PL) in (33) toegther with (28), (29) and (37), uniformly reduces to

the GO result in (25). One can verify this GO limit by employing the asymptotic

,approximations for Ai(-k (t) and Al'( --k3,t) in (33) for I >> 1 corresponding to i
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the lit side of the caustic which lies exterior to the caustic transition region; these

asymptotic approximations are:

1 -I 2 (3 7
Ai(-kl3) k-6' sin(3kQ ± ) ; ( >> 1 , (38)j/7 3 4

2 7r
irk6 (cos( -k ± ; >> 1 (39)

A uniforn result similar to that in (33) call also be obtained for the shadow side

of the caustic; this uniform analysis for the shadow side is presented next. Once

again, the starting point is the integral representation in (4). A transformation

similar to that in (27) is introduced into the phase term in the integrand of (4)

when P = PL on the shadow side of the caustic as

si  -R= ts3+ ( t + 6, , > 0, (40)

3

to account for the proximity of the stationary phase points Qc and Q, in the phase

function (si + R), which occur on the complex extension of the original boundary

I(see (7)). Also,

I [(s" 4 s'c) + (,' ±. c)] (41)
2 a a

and

3 [(lC + ,rc) - (c +c (2)

The .5b and s¢ in (41) and (42) ae the as those seen previously in (26a; 26b,;

these quantities are the analytically continued values of sb, and sr from those asso-

ciated originally with the real stationary point Qb to the complex stationary point
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at Q' as shown in the Appendix. Likewise, s" and s" in (41) and (42) represent

the analytically continued values of s. and a from those associated originally with

the real stationary point Qa to the complex stationary point at Qc. Substituting

(40) into (4) yields

EB(Ps) -- e-jk" J dtF(t)e-Jk( ,t+(.t) (43) 3
where P(t) was defined earlier in (31). Again, one begins by expanding F(t) as in

(32); next, retaining only the m=O term in that expansion leads to the following

uniform result for the scattered field E5 (Ps) valid on the dark side of the caustic:

S-- 2 t

E'(Ps) 2irj e-k [Pk-3 Ai(k'() + (.QAj(kt)] 
I+O(k - 1)  (44)

in which U
Q,~ j(k _a [ Vp:; €{ . 4: IA(Q ): )(Q+ r

e sC ()ca I-i

It is noted that since (, in (42) is positive (see (40)), the quantity within the I
square brackets in (42) satisfies the conditions

Re[(s'c + 5,,) - (sC + sr,)] = , (46)

Im,[(S + S - (S:[ + )1 > 0 I
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On the shadow side exterior to tile caustic transition region, the result for E'(Ps)

in (44) together with (41), (42), and (45) reduces uniformly to the analytically con-

tinued GO result in (26) for the field reflected from Q,. One can verify this limiting

value in (26) for the expression in (44), by employing the asymptotic approxima-

tions for Ai(k3(,) and Ai'(k3.) ill (44) for > > 1 corresponding to the dark side

I of the caustic which lies exterior to the caustic transition region; these asymptotic

approximations are:

Ai(kS C.) 1(k- e/ )  "" ; &  ( 1 , (47)

. 2 1 2 ]

Al (k ,)- -2--r (k2,)1(; > 1 (48)

It is important to observe that even though the values associated with both complex

stationary points Qc and Q, respectively, are present in the expressionsfor {}o
in (45), the use of (47) and (48) in (44) yields an asymptotic limit containing only

the field reflected from the complex stationary point Q, (and not Qc).
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III An Asymptotic Solution for the Field Associ-

ated with a Three-Dimensional Smooth Caus- I
tic:

The development presented in Section 2 for the 2-D case is repeated here for the

corresponding 3-D situation. The excitation, as in the 2-D case, is assumed to be

produced by a localized source such that the field incident on the 3-D reflecting

boundary can be represented ray optically. Again, both the non-uniform and the

uniform asymptotic approximations of the PO integral for the scattered field in

3-D are presented separately in Parts A and B of this section, respectively. As

before, the non-uniforn asymptotics yield the pair of GO reflected ray fields on I
the lit side of the smooth caustics of reflected rays that are associated with the

two real stationary points correspond to points of reflection at Q( and Qb on the

3-D reflecting boundary. These two reflected GO rays coalesce at the caustic where

their non-uniform GO field becomes unbounded. The non-uniform field on the dark

side of the caustic is associated with only one of the two complex stationary points

which yields an exponentially decaying field behavior (the other does not satisfy

the radiation condition); this complex stationary point is denoted by Q, on the

complex extension of the reflecting boundary. Once again, it is noted that the non-

uniform analysis is not valid at and near the smooth caustics of reflected rays; one I
must instead employ the results based on the uniform analysis within these caustic

regions. The non-uniform result for the dark side of the caustic is also unbounded at I
the caustic. Of course, the uniform results reduce to the non-uniform results outside
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the caustic transition regions. As done for the 2-D case, the non-uniform analysis

I serves to introduce the notation for the 3-D case which will also be employed in the

uniform asymptotic analysis.

In the 3-D case, there can in general be two smooth caustics of reflected rays;

the present analysis is valid across each caustic provided that these two caustic

surfaces do not intersect. For the sake of convenience of analysis, it is assumed

I that the 3-D reflecting boundary is rotationally symmetric (about the z-axis (say)),

and that the observation point lies in the plane defined by the point source (which

illuminates the boundary) and the axis of revolution (or z-axis) of the rotationally

symmetric boundary. Under this assumption, the plane of incidence (or reflection)

I defined by the incident ray direction and the normal to the surface both of which

are evaluated at the real point of reflection on the boundary coincides with one of

I the principal planes of that boundary. While this situation arises only in special

cases, it is chosen because it simplifies the analysis. Furthermore the asymptotic

results obtained in this special case can be employed directly to deal also with the

general case in which the boundaries are not necessarily rotationally symmetric,

and in which the planes of incidence do not necessarily coincide with any of the

I principal planes of the surface at real points of specular reflection on the boundary.

I III-A Non-Uniform 3-D Analysis:

The electric field P(P) which is scattered by a 3-D boundary illuminated by a

ray optical field (chosen here to be that due to a point source at P'), and which is

observed at a point P exterior to the boundary can be expressed as usual in terms
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of the induced current i on the boundary S by:

jkZo f e-JkR

!'(P) -_ 47r- ,R f I h X XJ(Q")]-R ds' (49)

in which Q' is any point on the boundary S and R is the vector from Q' to P (or

R = Q'P ) as before. Also, P cainot be too close to S for (49) to be valid. The

PO approximation to (49) is employed via the usual GO approximation J(Q') =I

2ii x -lH(Q'), (on the lit portion of S and zero otherwise) given in (2), where i is I
the unit outward normal vector to S at Q' and the incident ray optical magnetic

field fH'(Q') due to a point source at P' is given by

, ;(Q) , )ZYxA = 0 (50)

As usual, Hi(Q') : ZO Y x R'(Q'), in which the incident electric field E'(Q')

,4 It is noted that 1' =P'Q' as in the 2-D case, and s' = '

Since one is primarily interested in the fields specularly reflected from the surface,

it will be assumed that the boundaries of the PO integration (resulting from the

shadow boundary on the surface) are far from the stationary points in the expo-

nential phase term of the integrand; furthermore, these spurious contributions to

the PO integral arising from the shadow boundary will be ignored. For the sake of

convenience, the region of integration will still be denoted by S. Thus, under the

PO approximation, (49) becomes:

E(P) z- f x fi x (h x A' x A) -  1' )

Let ds' = dt'. V', where f' is the coordinate curve corresponding to the gener-

ator of the 3-D surface of revolution S and e is the azimuthal coordinate which is I
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orthogonal to t'. As in the 2-D case, the phase teim e j k(s+R) exhibits real station-

ary phabe points at Q. and Qb on S if P = PL on the lit side of the smooth caustic;

likewise it exhibits complex stationary points at Q' and Q' (which are complex

conjugates of each other) if P = Ps on the dark side of the caustic. The stationary

phase condition is given by:

V(s+ R) = 0 ; '2 . V(s' + R) = 0 (52)

Both the above conditions (namely (52a) and (52b)) must be satisfied simultane-

ously at the stationary points. If the source point and the axis of revolution of S

define the plane C' = C,, and if the observation point lies in this plane then (52a;

52b) can be shown to yield stationary phase points for which

t' = e', (at stationary phase points) (53)

along with e' = t'. for Q. and f' = f'b at Qb, if P = PL. Thus, the coordinates of

Q. are (e'.; e25 ) and of Qb are (eb; t'., respectively. Likewise, when P = Ps, the
coordinates of Qc are (t'; t') and of Q, are (e1b; t',). The quantities t b, te

and elb have the same meaning as in (6a; 6b) and (7) for the 2-D case.

At the real stationary points Qa and Qb on S for P = PL the realtionships

given in (8)-(11) for the 2-D case also hold for the present 3-D situation because the

condition e' = e' at the stationary phase points describes a plane which reduces

the 3-D problem effectively into a 2-D problem. The reflected rays in Figures 1(a)

and 1(b) for the 2-D case also exist in the plane t2 = ', for the 3-D case except that

the boundary in those figures must be modified to become rotationally symmetric

for the present 3-D analysis.
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In the neighborhood of the stationary points Q0 and Qb when P = PL, one may

employ the following local approximation for the phase term k(s i + R):

Si + R ; 8a,b + Sa,b + G I(Q,b) COS' 0i,(e; -- lalb) 2

+ 2G2(Qa,b)(t2 2,

for Q' near Qa,b (54)

At high frequencies (or large k ), the dominant contribution to (51) comes from

the stationary phase points Qa and Qb on S when P = PL ; therefore, (51) is

approximated via (54) to obtain:

E'(PL) e f e-k(dt'dt [ x x (1 x k x A(Q'))]
2w 1 ... 1 <S'R

.e-3G (Q.)(t1 . )2 e iG 2 (Q.)et , t , . )2

fe del' de' x hR (h i {(x'
f-32 fV ~ 2- 2Si

.e - j -G1(Qb)YbI -)be-)2 }] (55)

in which Gl(Q.,b) is given as before in (14) together with (15). Likewise, G2(Q,,b)

is defined as:

G2(Q, b)z 1 + 1 ,at Q.,b (56)
Sb P2a,2b

It can be shown that
1 1 2 cosO0 bI

I = I + 2 o--si, (57)

P2a,2b b Pt(Qa,b)

The domains of integration st and s2 in (55) include the disjoint neighborhoods of

the points Q. and Qb on S. In (57), Pt(Qa,b) denotes the radius of curvature of S

along i at Qai ; whereas p9 (Q.,b) which occurs in (14) via (15) is the radius of I
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curvature of S along i' at Q.,b as indicated previously. Additional approximations

valid near Qa and Qb in the integrals over s, and 82 of (55) yield

jk .i ejk(s +s'

Er(PL) zjl2 [kx×kx.(ft"x×,xA(.))] ,,
27r I 88sI* de- eaG2(Q)(lf

2-2 .J d'e-JG lQl~30 t-~)

I0 ±AAGxfQ.x(IS6 x1xA(Q 6 ))I

f d'e 2 , ,)2
0o foo

+ [Rab X b X (ab X Si x A(Qb))l b ,

a a

dk(i(Qa) os2 ,/.G j(Qa)c .. (1j-j)

It e- d' 2r eiSn[ 26}
k0Qb o2  f. kG(1 (59)

Following essentially the same steps which lead one from (15) to (16) for the 2-D

case, it can be easily seen t tham rece i re non-uniform stationary phase

evaluation to:

I'( )k [ E (. R ( Q ( ii. Xa _ _ A ( Q_ _))] e a

2v a 8 p.Ias

.. .2.r S ~ gn[GI (Q.)] . 2. V_3 Sgn[G, (Oa)]

CPS2 VP2 I - 7 -j 4

kE(QO-- ).(Q kG2(Q)

+ ~ ~ ~ ~ e [ik( X' +~ X )ibX4 (b)

b 2;klO)" 2r _be g[lQ) 27rb e-J'Sgn[G2(Ob)]} (59)

Making use of the previously mentioned relationships in (14), (17), (21), (24) and

(.56) simplifies (59) to the more familiar GO reflected field from as:

Ir

IS(PL) + r

+E:'(Qb)" h(Qb) Pk + ;pb+ e ()
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It is noted that E(PL) in (60) is the sum of the GO fields reflected from the points

Q, and Qb on S to PL on the lit side of the caustic defined by s[, = IpbIl where

Plb = - IPbl Also, the relationships in (22) and (23) are true in the result of (60);

furthermore, I
P'2,2b _ , (61)

P+a,2b + sb 2 + ,

if S is a surface of revolution because P2a,2b > 0, and G2(Q,,b) > 0 in that case since

the axis of revolution is now the other caustic of the reflected rays (i.e., the second

caustic surface degenerates to a line).

The result in (60) fails at and near the caustics of reflected rays. Although

(60) has been developed for the special case of a surface of revolution with the

observation point PL being located in the plane defined by the source point and the

axis of revolution, it is also valid for the GO reflection of an arbitrary ray optical
field from an arbitrary surface, except that Pr. and Pr,2b in (60) can no longer

be obtained from the simple expressions in (15) and (57), respectively, but instead I
they must now be obtained from the more complicated expressions in [16,17,18] for

the latter more general situation. I
A similar stationary phase analysis at a point P = Ps on the shadow side of the

caustic defined by s9, = IPgbl with Pb - IPb yields the following expression for

the scattered field E'(Ps):

E'(Ps) E' (Q) Pm e- (62a)

ci + ,r, +c rc

where, 
I

- C-jkqb

E,(Qc) - A(Q,) St (62b)

30 I
I
I



The expressions in (62a; 62b) are analogous to those in (26a; 26b) for the 2-D case.

As mentioned earlier, the field in (62a) is specularly reflected from the point Qc,

which lies on the complex extension of the original boundary; the contribution from

the other (complex conjugate) stationary phase point at Qc must again be discarded

on physical grounds as it violates the radiation condition. The contribution in (62a)

exhibits an exponentially decaying field at Ps. As in the 2-D case, all the quantities

associated with the superscript c must be evaluated via an analytic continuation

procedure. The non-uniform stationary phase approximation in (62a) is not valid

at the caustic associated with Prb ; it is unbounded there. A uniform asymptotic

approximation which remains valid at and near this caustic is presented below.

III-B Uniform 3-D Analysis

One begins the uniform asymptotic analysis by noting that the non-uniform results

in (60) and (62), which become unbounded at s, Ipbl with Pb = - IPb, are also

valid for the reflection of an arbitrary ray optical incident field from an arbitrary

3-D surface. Furthermore, the only difference between the non-uniform results in

(60) and (62), for the 3-D case and the corresponding results in (25) and (26) for the

2-D case are the additional reflected ray divergence factors ,/ ";.- and p2_
P2.,2b+S.' P21+ 6

which are present in (60) and (62) respectively for the 3-D case. The 3-D case

reduces to the 2-D case when P2,2b' oo and IP2b -- oo so that the spreading of

the reflected rays is now restricted only to one plane for the 2-D case, and the other

spreading (or ray divergence) factors alluded to above (containing P2,2b and p2)

become unity for the 2-D case. Consequently, the uniform GO result for the 3-D

case which reduces to (60) and (62) on the lit and dark sides, respectively, outside
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the caustic transition regions can be obtained directly from (33) and (44) together

with (37) and (45), respectively, by conjecturing that for the lit side, E"(PL) is given

by

E'(PL) "" 27r e-k6 [PI k-3Ai(-k (t) + J(I 2Qe k-IAi'(-k3e)] (63)

with b, and (I (where (t > 0 ) being the same as in (28) and (29). Also, P, and U
Qt are given by a simple modification of (37) to include the additional incident and

reflected ray spatial spreading (or divergence) factors; thus,

Qt____ /Pa'I a 2 PaI

A(Qb). R(Qb) Pb /-Pb e+'l] (64) I
b \I b 4 2b±+Sb J

Likewise, E'(Ps) for the shadow side is given by 3
E'(Ps) - 27j e-2 [Pk Ai(k -) + (a- Q k- i Ai'(-k3 (65)

with b, and (, (where , > 0 ) being the same as in (41) and (42). In addition, the

P and Q, are given by I
4_r a la e , / -,
"a _ RA(Q(Q) PrI P +(6

2V pI + sb< p42 + s I
Thus, the PLs and QLS above in (64) and (66) are obtained by simply including

the transverse ray divergence factors I P2alb r and 1 P",2b into the
V;/,T V P 2 ,2+ S. V P 2.,2b+'.

2-D results given in (37) and (45); here ,, is the additional transverse spreading
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or divergence factor for the incident field associated with a point source, whereas

+ is the additional spreading factor for the reflected ray in the 3-D case.

The results in (63) and (65) are also valid for the general 3-D case as are the non-

uniform results in (60) and (62), with the understanding that (P'.,1b;P;2.,2b ) and

(Pr,lb; P2b) must be found from the more general expressions in [16,17,18] that areI valid even when the plane of incidence does not coincide with any of the principal

planes of the surface at the point of reflection. Furthermore, the illumination (or

the incident field) may be an arbitrary ray optical field (rather than a special point

source type illumination). For the point source or spherical wave illumination,

-E, Q, ) thus, for the arbitrary ray optical incident field, the terms

in (64) and (66) must be replaced by EA'RB(Q') e+Aika~RB(') where EA ARB(Q') is

the incident ray optical field whose phase at Q' is given by exp(-jksiARB(Q')). It is

easily verified that the results in (63) and (65) which are valid at the caustic defined

by s, = Ip7bI with Pr = IPbI reduce uniformly to the results in (60) and (62),

respectively, outside the caustic transition regions where (I >> 1 and C. >> 1; these

limits leading to (60) and (62) can be obtained via the asymptotic approximations

for the Airy functions described previously in (38;39) and (47;48).

The uniform results conjectured in (63;64) for P = PL could be justified by

starting with the PO integral for P(P) in (51) by introducing a local approximation3 analogous to (27) for the phase term e - j k(s'+R) in the integrand of (51) which unlike

(54) is valid even when Q, and Qb are close together; namely

3 13 1
s' + R - t (C") - (, I(') +, + - 2(t(e'(e - 2,)2 (67)

3 22

I with b, and (e as in (28) and (29) for the special case when the observation point at
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I
P PL lies in the plane defined by the source point and the axis of revolution as

was assumed in the previous non-uniform stationary phase analysis for (51) which

Ifd to (60). The G2(t(' 1 )) is evaluated at f' = e', and has the general form as in

(56); namely

1 1 (68)=2tei) st(ei) + P (el) (8

with sr( el.,b) = s.,b and p2(eC.,lb) P2a,2b , in which (ei,., ) and elb, e' are the

coordinates of the stationary phase points Qa and Qb on the line e' = e2, as indicated

below (53). Incorporating (67) into (51) yields: 3
E"(P ) e-  t d - (  0 -j

with

0(,ea) Lk [? x ? x (h. x x A(t,el))] 1 de()

where t = t(e') as noted earlier. Also, the region of integration has been extended I
to infinity via the usual stationary phase arguments. Evaluating the inner integral

over e' first using the stationary phase approximation yields I

E'(P) ck di 3  (71)

In obtaining (71), the quantity 0(t, e2 ) in (69) is approximated by its value at. the

stationary point e'2 = when evaluating the inner integral on (? in (69). The

remaining integral in (71) on t((' 2 ) can be evaluated exactly as in (30)-(33) for the 3
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2-D case to obtain the form of the solution which is the same as in (63) with Pt and

Qt given by

A a aG(aco)G(

A(Qb) R(Qb)cos 0' e+

S~S~ Gl(Qb) cos'G 2(Qb)

in which G 1 (Qa,b) = p ', i~ , and G 1 (Qob) is the same as GI'(Qa,b) with the
.l + b+ ,b

subscript 1 replaced by 2. It is then easily verified in the special case of a surface

revolution, with PL being located in the plane containing the axis of revolution of

the surface and the source point, that (72) is indeed identical to the one conjectured

in (64) using physical arguments.

The result conjectured in (65;66) for the dark side of a caustic can also be

justified similarly for the special case of the surface of revolution when Ps is located

in the plane containing the axis of revolutioI- and the source point. For the latter

case, the 6 and -(I in (67) must be replaced by 6 and +(, where (, > 0, with b

and (, is as defined in (41) and (42), respectively.

IV Numerical Results

The 2-D uniform asymptotic solution given in (33) and (37) has been applied here

to study the backscattering from boundaries which contain points of inflection.

One such application is shown in Figure 2 where a closed concave-convex shaped

geometry with an edge is illuminated by a plane wave, and it is of interest to find

the far zone backscattered field. In addition to the field of the rays specularly
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reflected from this boundary, the edge diffracted ray field is also included in this

backsca~ter calculation; however, the effect of the rays that creep around the convex

portion of the surface after being excited directly at grazing incidence or by edge

diffraction is ignored in this work. Also neglected are the effects connected with

the launching of whispering gallery type modes on the concave boundary by the

mechanism of edge diffraction, and their subsequent transformation into creeping

wave or surface ray modes on the convex position of the boundary past the inflection

point. The latter effects which have been ignored may not be negligible far from

the reflected ray caustic transition region; hence, the backscattered field has been

calculated using the uniform GO results of (33) and (37) together with the singly

edge diffracted contribution only for 200 < 0 < 800 in Figures 3 and 4 for the case

when the incident electric field is perpendicular (i.e., soft case) and parallel (i.e.,

hard case) to the plane of incidence, respectively. Also shown in Figures 3 and 4

are comparisons with an independent moment method (MM) based calculation; the

good agreement between the uniform solution and the corresponding MM solution

serves to confirm the accuracy of the uniform solution on both the lit and the dark

side of the caustic of reflected rays. It is important to note that the maximum in

the backscattered pattern occurs near 9 = 500 which is just on the lit side of the

caustic of reflected rays. Thus, the effect of the ray caustic is quite significant in

producing a strong backscatter around this aspect angle of 9 = 500. It is further

noted that the region corresponding to 0 < 500 is on the dark side of the caustic.

Additional calculations via the present uniform GO analysis have been per-

formed for the far zone backscattering by a 2-D smoothly indented cavity of Figure

5, which is illuminated by an electromagnetic plane wave. The results of these cal-
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culations are presented in Figures 7-11. Actually there are three parts to Figures

7-9; in part (a) of these figures the result for the backscattering from the geometry

of Figure 5 are presented, whereas, in parts (b) and (c) of each of these figures

the backscattering from a 2-D rectangular cavity of the same length and depth

are presented for the sake of comparison [19]. The 2-D recta iuflar cavity geome-

try is shown in Figure 6. The results in parts (b) and (c) of Figures 7-9 for the

backscattering by a rectangular cavity pertain to the cases when the incident elec-

tric field is parallel and perpendicular to the plane of incidence, respectively. The

results in part (a) of Figures 7-9 are the same for both of these types of incident

field polarization over the range of aspects 101 < 600 which have been considered.

The latter is true because the polarization sensitive creeping or surface ray modes

launched on the convex portion of the reflecting boundary outside the smoothly

indented cavity portion do not contribute in the range 1ol < 600, and because the

uniform GO reflection contribution from the smooth indentation gives the same dB

magnitude levels for the two different incident polarizations (only the phase of the

total uniform GO field differs by a sign for the two types of incident polarization).

Figures 7-9 pertain to cavities of the same length; only the cavity depth changes

in each of these figures. Figures 10 and 11 show the change in the backscattering

from the smoothly indented cavity of Figure 5 due to changing the cavity length

while keeping the cavity depth fixed. It is seen from Figures 7-11 that the pertur-

bation in the backscattering due to the presence of a cavity is limited to a smaller

range of aspects for the smoothly indented cavity as compared to that for the sharp

edged rectangular cavity. This is to be expected because the effect of the smoothly

indented cavity is significant only within the two reflected ray caustic transition
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regions. Nevertheless, it is also observed that the backscattering by the smoothly

indented cavities can be approximately of the same order as the rectangular cavity 3
for aspects that lie between the reflected ray caustics. It is noted that there are

two reflected ray caustics in the far zone for the problem in Figure 5 (there is one I
caustic associated with each of the two points of inflection on the smooth cavity).

These caustics are non-intersecting in the far zone; however, they can intersect to U
form higher order caustics in the near zone. The present uniform GO analysis can 3
be employed to find the scattering from the smoothly indented cavity of Figure 5

only for cavity lengths which are large enough so that the two points of inflection 3
and their associated reflected ray caustic transition regions do not come close to-

gether. Finally, the present PO based uniform analysis also cannot be used near 3
grazing angles of incidence on the reflecting boundaries with points of inflection. It

is proposed as a part of future effort to remove the latter restriction. In conclusion, 3
the present uniform GO solution is shown to be accurate and relatively simple to

use within its domain of validity; the conditions under which the uniform GO re- I
suits remain valid are essentially no different than the conditions required for the

conventional GO analysis to be valid.

I
I
I
I

I
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Appendix

The Parameters Used in the Uniform GO Calcu-

lation

In this appendix, one defines the parameters which have been used in the uniform

GO solution for the lit side of the caustic. These parameters are then analytically

continued to complex coordinate space in order to calculate the field on the shadow

side of the caustic. These parameters are presented for the general 3-D case; however

one can easily obtain the 2-D results by requiring z = 0 in the 3-D results.

Parameters for the Lit Side of the Caustic

Let the coordinates of the source point P' and the observation point PL be denoted

by (x', y', z') and (XL, YL, ZL), respectively. For the sake of being specific, one may

choose the real point of reflection Qb on the actual reflecting boundary; let the

coordinates of this point Qb on the surface be (xb, Yb, zb). Then one can define the

ray path lengths sb, s6,, the direction of the incident ray g', the direction of the

reflected ray K, the surface normal nib at Qb, the scalar product between the surface

normal and the reflected ray direction cos 0b, the radius of curvature of the surface

pg at Qb and the vectors eL, eI' and e' associated with the incident and reflected

ray for the point of Qb as the following:

8b = ±. + (Yb - y +)2 ± (zb - (73)
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r3

S (L- Xb) 2 + (YL -
y b ')2 + (zL -

z b )  (74)

- 1 = - X') + (Yb - Y' -+(Zb Z') (75)
Sb

b - r [(XL X b)+ (YL Yb) + (ZL Zb) i (76)

cos(2 ) = -i' - (77)
O bcos( 2 0') + 1

cos9o b. . (78)

2ib = , (79)
= 2cos rlb

e- x (80)

p,(Qb) = P,(Xb, Yb, Zb)

Parameters for the Shadow Side of the Caustic

When the observation point is on the shadow side of the caustic the point of reflec-

tion is no longer real (as is Qb); it is now replaced by a complex point of reflection

Qc as discussed in Sections II and III of the report. The corresponding parameters

for the shadow side are denoted by the same symbols as in (74)-(81) for the lit

side except that they now contain a superscript c to denote the fact that they are

associated with the complex point Qc. Let the coordinates of the observation point

PS on the dark side be (X,,y.,,z,). Let the coordinate of the complex reflection

point Q, on the complex (or analytically continued part) of the extended surface

be (x', y', z,). One can then redefine the above parameters for the lit. side so that

they will be valid for the shadow side by simply replacing the coordinates of Qb by
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those of Q'. Thus, one arrives at the following results:

S /(X, XT) 4- (Yc - Y')' + (4- (81)

- i) 2 ±b) (Y YP+(Z )2 (82)

- c(X - '"+(b-Y' +(b (83)

Sb

co5scvb) = _ib cbc(85)

sOc= cos(20bc) + 1 (86)Co b 2
rc - k

b 9  (5 b87)
2 cos9 Ob

'c i;c

I1 e1 X (88)
rc cX r

Cj C 1  b

pg.(Qcb) - P9 (4c,yc,zbc)
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Figure 1: Scattering by smooth boundaries which produce smooth caustics of re-

flected rays.
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Figure 1: (continued)
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The boundary is defined by the equation

y= iA (cos(3': + 1)

with A 0.3 m being the naximum length in the i direction

and the frequency at which the calculations of backscatter are made is 3 GHz.

Figure 2: Scattering by a boundary with a point of inflection.
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Figure 3: Backscattering from the geometry in Figure 2 when the electric field is I
polarized perpendicular to the plane of incidence.
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Figure 4: Backscattering from the geometry in Figure 2 when the electric field is

polarized parallel to the plane of incidence.
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(a) Backscattering by a smoothly indented

cavity (Figure 5) of L =-10.2A and D = l.A.

Figure 7: Backscattering by a smoothly indented cavity (of Figure 5) as well as by

a rectangular cavity (of Figure 6).
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(b) Backscattering by a rectangular cavity (Figure 6)

of L = 10.2A and D = 1 -A when the electric field is

parallel to the plane of incidence.

Figure 7: (continued)
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(c) Backscattering by a rectangular cavity (Figure 6)

of L = 10.2A and D = 1.A when the electric field is

perpendicular to the plane of incidence.

Figure 7: (continued)
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(a) Backscattering by a smoothly indented

cavity (Figure 5) of L = 10.2A and D = 1.1A.

Figure 8: Backscattering by a smoothly indented cavity (of Figure 5) as well as by

a rectangular cavity (of Figure 6).
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Figure 8: (continued)
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(c) Backscattering by a rectangular cavity (Figure 6)
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Figure 8: (continued)
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a rectangular cavity (of Figure 6).
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Figure 9: (continued)
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Figure 10: Baclcscattering by a smoothly indented cavity of Figure 5 with L =10.A

and D = I.A.

61



LU6

LLJa
LU

C4 C14

L9 0 . -60. -30. 0. 30. 60. 90.'

ANGLE IN DEGREES

6 62


